Challenges and opportunities of quantum computing

Motoya Shinozaki

Contents

Introduction

- History of quantum computer
- Quantum supremacy

Quantum computing

- Principles
- Grover's algorithm

• Principles of quantum bits

- Nitrogen-Vacancy center in diamond
- Silicon quantum dots
- Superconducting quantum bits

Contents

Introduction

- History of quantum computer
- Scaling of quantum computer

Quantum computing

- Principles
- Grover's algorithm

• Principles of quantum bits

- Nitrogen-Vacancy center in diamond
- Silicon quantum dots
- Superconducting quantum bits

Category of quantum computer

*Ref : https://www.slideshare.net/masayukiminato/jan-2018-85514793

History of quantum computer(ガバガバ年表)

Year	Event	Quantum bit	Algorithm
1980	Benioff (1980) The first quantum mechanical model of a computer. Feynman (1981) Proposed a basic model for a quantum computer Wotters, Wojciech, and Dieks (1982) No-cloning theorem		
1990		Cirac (1995) Proposed an experimental realization of the controlled-NOT gate Cory, Fahmy, and Havel (1996) First report realizing gates for quantum computers based on NMR	Deutsch-Jozsa algorithm (1992) Shor's algorithm (1994) Steane (1996) Quantum Error Correction Grover (1996) Database search algorithm
2000	Kadowaki and Nishimori (1998) Quantum annealing in the transverse Ising model	The principles of topological quantum computation Loss (1998) Quantum computation with quantum dots Kane (1998) Proposed a silicon based nuclear spin quantum computer Nakamura (1998) Invented superconducting qubit	Jones, Chuang (1998) Experimental demonstration of Grover's algorithm by NMR Chung (1998) Experimental demonstration of D-S algorithm by NMR Vandersypen (2001) demonstrated Shor's algorithm to factor 15 using a 7-qubit NMR computer.

In 1998, many new phenomena and algorithms were demonstrated

Phenomena: quantum teleportation¹ quantum error correction²⁻⁴ "Schrödinger Cat" states⁵

Quantum bit size: NMR quantum computers have also grown in size, with three⁶, five⁷ and seven⁵ qubits

Algorithms: Deutsch–Jozsa algorithm^{6,7} Quantum counting⁸ (an extension of Grover's quantum search) Simple example of order finding⁹

M. A. Nielsen *et al.*, Nature **396**, 52 (1998).
 D. G. Cory *et al.*, Phys. Rev. Lett. **81**, 2152 (1998).
 D. Leung *et al.*, Phys. Rev. A **60**, 1924 (1999).
 E. Knill *et al.*, Phys. Rev. Lett. **86**, 5811 (2001).
 E. Knill *et al.*, Nature **404**, 368 (2000)

N. Linden *et al.*, Chem. Phys. Lett. **296**, 61 (1998).
 R. Marx *et al.*, Rhys. Rev. A **62**, 012310 (2000).
 J. A. Jones *et al.*, Phys. Rev. Lett. **83**, 1050 (1999).
 L. M. K. Vandersypen *et al.*, Phys. Rev. Lett. **85**, 5452 (2000).

Event:

* Citations

P. Benioff, *Journal of Statistical Physics* 22 563 (1980). *934
R. Feynman, *International Journal of Theoretical Physics* 21 467 (1982). *7379
W. K. Wootters and W. H. Zurek, *Nature* 299 802 (1982). *5034
D. Dieks, *Physics Letters A* 92 271 (1982). *1385
T. Kadowaki and H. Nishimori, *Phys. Rev. E* 58 5355 (1998). *891

Algorithm:

D. Detsch and R. Jozsa, Proc. of the Royal Society A **439** 1907 (1992). *2634 P. W. Shor, Proc. 35th Annual Symp. on Foundations of Computer Sci. 124 (1994). *5831

A. Steane, Proc. of The Royal Society A Mathematical Phys. and Eng. Sci. 452 1954 (1996). *1421

L. K. Grover, Proc. of the 28th annual ACM symposium on Theory of Computing 212 (1996) *5027

I. L. Chuang et al., Phys. Rev. B 80 3408 (1998). *874

J. A. Jones et al., Nature 393 344 (1998). *665

I. L. Chuang et al., Nature 393 143 (1998). *830

Quantum bit:

J. I. Cirac and P. Zoller, *Phys. Rev. Lett.* **74** 4091 (1995). *4473

A. Y. Kitaev, Annals of Physics 303 2 (2003) *4531

B. E. Kane, Nature 393 113 (1998). *4392

History of quantum computer

: capacitor

dc gate

1 µm

pulse gate

Quantum supremacy

Big news! (2019/10/23) Article F. Arute *et al.,* Nature **574**, 505 (2019). https://arxiv.org/abs/1910.11333

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-
Received: 22 July 2019
Accepted: 20 September 2019
Published online: 23 October 2019

Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marisa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann¹⁶, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi², Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao M¹¹, Kristel Michielsen¹¹³², Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, Johni C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel², Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung¹³³, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga¹¹⁴, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹& John M. Martinis^{15,4}

Country	Tweets	% of Tweets
Japan	623	10.76%
United States	460	7.94%
United Kingdom	125	2.16%
Spain	117	2.02%
Saudi Arabia	110	1.90%

Twitterの反応

Twitter demographics

量子超越性: ある問題の計算実行速度が量子コンピュータ>>古典コンピュータ → Sampling random quantum circuits (実用性は特になし)

量子コンピュータの計算結果をどう検証するのか シミュレーションに必要なメモリ容量: 10 qubits ・・・1~2GB (我々のPCでもOK) 53 qubits・・・~10PB Google supercomputer "Jűlich": 250 TB << 10PB → 検証方法の改良

<u>Google</u>検索結果 (in Japanese)

 量子超越性
 ↓ Q

 Q. ずべて 回 ニュース □ 画像 □ 動画 ② ショッピング : もっと見る 設定 ツール

 約7,910,000 件 (0.25 秒)

 トツプニュース

 Google vs. IBM、「量子超越性」で大混乱? 何が起きているのか: 536th Lap キーマンズネット・2日雨

 「量子超越」で社会変革も、Google成果 専門家に聞く 日本経済新聞・2日前

→ 「量子超越性」のその他のニュース

Google

グーグルの「量子超越性」は革命の始まりにすぎない - CNET Japan

https://japan.cnet.com > ニュース > 解説 ▼ 4 日前 - 量子コンピューティングの研究を10年以上にわたって続けてきたグーグルが、ついに「 量子超越慢」を実証したと発表した。保疑派をも黙らせそうな大きな発展だが、もちろん実用 化に向けた課題はまだまだ山境だ。それでも、研究者たちは意欲…

グーグルが主張する「量子超越性の実証」に、IBMが公然と反論 ... https://wired.jp>2019/10/24> jbm-googles-quantum-flop ▼

http://witeu.jp/2019/10/24/10/min-google-quantum-leapgang-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leap-quantum-leapgang-quantum-leap-qu

Google、量子コンピューターの「量子超越性」を実証と発表…

https://japanese.engadget.com >2019/10/24 > google マ 2019/10/24 - Googlei10月23日(現地時間)、量子コンピューターが現在のノイマン式コンピ ューターの処理能力を超える、いわゆる「量子超越性(Quantum Supremacy)」を実証したと 発表しました。論文は、学術理話Natureで公開されています。

量子超越性実証で世界騒然のGoogle量子ラボに行ってきた…

https://www.gizmodo.jp > 2019/10 > frst-look-at-sycamore-googles-quant... ▼ 6 日前 - Googleの量子超越性実証で世界騒然、ビットコインが落ちて、IBMが励起してますね。 正式発表の再現図(上)だけじゃ信じられないそということで、UCサンタバーバラのGoogle量 子ラボで量子チップ「Sycamore」を触ってきました。

今,量子コンピュータが熱い!!

Quantum supremacy

<u>Googleの検証方法</u>

1検証したいアルゴリズムと、一部の計算を簡略化した簡略アルゴリズムを用意

https://arxiv.org/abs/1910.11333

4量子コンピュータによる検証アルゴリズムの実行時間 (200 sec) << スパコンの試算時間なら量子超越性実証

Contents

- Introduction
 - History of quantum computer
 - Quantum supremacy

Quantum computing

- Principles
- Grover's algorithm

• Principles of quantum bits

- Nitrogen-Vacancy center in diamond
- Silicon quantum dots
- Superconducting quantum bits

Principle

Classical logic gates

<u>RS Flip-Flop</u>

S	R	Q _n
0	0	Q _{n-1}
0	1	0
1	0	1
1	1	Indefinite

⇒SRAM

Principle

Quantum gates

Hadamard gate (アダマールゲート)

0と1を重ね合わさった状態を作る

Inputの波動関数| ψ >をどう表示するか?

Bloch sphere

Quantum bit : Superposition of 0 and 1 $|\psi\rangle = a|0\rangle + b|1\rangle$ then $|a|^2 + |b|^2 = 1$

ここでa, bは複素数なので実数A, B, θ_a, θ_b を用いて量子ビット| ψ >を表示すると | ψ > = $Ae^{i\theta_a}|0$ + $Be^{i\theta_b}|1$ then $|A|^2 + |B|^2 = 1$

 $|\psi\rangle = e^{i\theta_a} (\cos \theta |0\rangle + e^{i\phi} \sin \theta |1\rangle)$ は下図の球のように考えられる(?) 球面の各点が $|\psi\rangle$ の状態に対応すると考えると,定義域をそれぞれ $0 \le \theta \le \pi, 0 \le \phi \le 2\pi$ として $|\psi\rangle = \cos \frac{\theta}{2} |0\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle$ と書ける!(グローバル位相 $e^{i\theta_a}$ は測定に影響しないので無視)

これをブロッホ球と呼び、量子ビットの幾何学的表現

*(?) θ , ϕ の各状態を異なる物理状態に1:1対応させたい $\theta = 0, \pi o \geq |\psi\rangle = e^{i\theta_a}, |0\rangle, e^{i(\theta_a + \pi)}|0\rangle \geq x b$ 、位相が違うだけで 同じ物理量を示す 定義域を $0 \leq \theta \leq \frac{\pi}{2} \geq 1$ ても, $\theta = \pi/2$ で赤道上で位相が違うだけの 同じ物理上を示す $\theta \Rightarrow \theta/2 \geq 5$ ことで解決!

Quantum bit : Superposition of 0 and 1 $|\psi\rangle = a|0\rangle + b|1\rangle$ then $|a|^2 + |b|^2 = 1$ ここで $|0\rangle \ge |1\rangle$ は直交するベクトル $\Rightarrow |0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

X gate (NOT gate)

量子ゲートを通る際、波動関数に左からゲート行列を作用

$$X|0\rangle = X \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$
$$X|1\rangle = X \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

何だか見覚えのある行列

Hadamard gate (アダマールゲート)
H
In Out
|0> (|0>+|1>)/√2
|1> (|0>-|1>)/√2
H|0> =
$$H\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\\-1\end{pmatrix}$$

 $H|0\rangle = H\begin{pmatrix}0\\1\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$
 $H|0\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$
0と1を重ね合わさった状態を作る

量子ビットの状態
$$|\psi\rangle = \cos\frac{\theta}{2} \begin{pmatrix} 1\\ 0 \end{pmatrix} + e^{i\phi} \sin\frac{\theta}{2} \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Xゲートの操作をブロッホ球で眺めると・・・

何だか見覚えのある行列

How to describe quantum algorithm

Bell stateのように、2つのq-bitが独立して記述できない状態: $|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$

IBM Q Experience

クラウド上でIBMの量子コンピュータで計算できる

古典的な探索アルゴリズム:線形探索

<u>ソートされていない</u>配列に対して、順番に見つけていく

要素1から順に見つける

計算量はO(N), (N:要素数)

グローバーのアルゴリズム:振幅増幅手法 探している要素の振幅をマーキングして振幅増幅反転させる

Targetの状態のみが浮かび上がってくる(確率が高くなる)

考え方:
$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x} |x\rangle interproduct |x_0\rangle \delta 探したいのでブラベクトル (x_0) \delta 作用 (x_0|\psi\rangle = (x_0|\frac{1}{\sqrt{N}} \sum_{x} |x\rangle = \frac{1}{\sqrt{N}} a correct interpretation of the second s$$

この確率を大きくして確実に $|x_0\rangle$ を観測する

手順1:マーキング $|\psi_{\rm m}\rangle = \frac{1}{2}(|00\rangle + |01\rangle - |10\rangle + |11\rangle)$

手順2:振幅の平均値から各振幅を引いて、また平均値を加える(振幅増幅反転) 振幅の平均値 $m = \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2}\right)/4 = \frac{1}{4}$ $|\psi_{\rm m}\rangle' = \left(m - \frac{1}{2} + m\right)|00\rangle + \left(m - \frac{1}{2} + m\right)|01\rangle + \left(m + \frac{1}{2} + m\right)|10\rangle + \left(m - \frac{1}{2} + m\right)|11\rangle$ $= |10\rangle$ *1の確率で|10>観測

$$\begin{split} &3q\text{-bit} \not{t} \not{t} \not{t} \cdot \cdot \cdot \\ |\psi\rangle &= \frac{1}{2\sqrt{2}} (|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle) \text{ から} |101\rangle &c 探 \\ &|\psi_{\text{m}}\rangle &= \frac{1}{2\sqrt{2}} (|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle - |101\rangle + |110\rangle + |111\rangle) \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

<u>繰り返し回数について</u>

繰り返し回数= $\frac{\pi}{4}\sqrt{N}$

成功確率 $\geq 1 - \frac{1}{N}$ で解ける!(繰り返しすぎると解から離れていく)

N=1024の場合

古典アルゴリズム(O(N)):最悪で1024回計算

グローバーのアルゴリズム(O(√N)):25回で0.999以上の確率で探索可能

*の段階で|
$$\psi_1$$
>が|0>なら| ψ_2 >も|0>, |1>なら|1>
その後, | ψ_2 >にアダマールゲートが作用するので
| ψ_1 >=|0>なら| ψ_2 > = $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$,
| ψ_1 >=|1>なら| ψ_2 > = $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$
 \Longrightarrow | ψ > = $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle - |11\rangle)$
Marking!

基本ゲートのみで マーキングを実装可能!

Toffoli's gate

NANDだけ、NORだけで全ての論理ゲートを表現可能

C = 1で固定するとNAND

Inpu	ıt		Out	put	
0	0	0	0	0	0
0	0	1	0	0	1 🔶
0	1	0	0	1	0
0	1	1	0	1	1 🔶
1	0	0	1	0	0
1	0	1	1	0	1 🔶
1	1	0	1	1	1
1	1	1	1	1	0 🔶

トフォリゲートとアダマール(H)ゲートを組み合わせる ことで任意の古典ゲートを実装可能!(Turing完全)

可逆ゲート→損失ほぼなし

量子アルゴリズムを理解するには<u>量子力学の知識</u>より,線形代数の知識のほうが大事 →オラクルで代用

量子アルゴリズムが古典アルゴリズムを上回るのは,限られた問題のみ

古典アルゴリズムにとって指数時間問題でも,量子アルゴリズムでは多項式時間問題になるような場合に有効

理論的には,古典ゲートの置き換えも可能 → 夢のゲート式量子コンピュータは古典機の上位互換

Contents

- Introduction
 - History of quantum computer
 - Quantum supremacy
- Quantum computing
 - Principles
 - Grover's algorithm
- Principles of quantum bits
 - Nitrogen-Vacancy center in diamond
 - Silicon quantum dots
 - Superconducting quantum bits

How to realize the quantum bits/gate

 Reservoir 2
 Reservoir 1

 Probe 2
 \$\phi_{ex}\$
 Probe 1

 d.c.
 Target
 Control
 d.c.

 gate 2
 gate 1
 1 \mm

 Pulse gate 2
 Pulse gate 1
 1 \mm

ソフトウェアについては何となくわかったけど
ハードウェアについて沢山の疑問・・・
-量子ビットをどう実現するか?
-入出力信号は何?
-ゲート操作はどのように行うのか?
-もつれはどう作る?
etc...

Criteria for q-bit

Grover's algorithm

Google Natureでは53 qubits, 1,113 single-qubit gates, 430 two-qubit gates

Criteria for qubit :

- Initialization Readout Coherence time Fidelity(忠実度) Scalability
- q-bitの初期化が可能
 - q-bitの読み出しが可能
- 量子コヒーレンス時間が総ゲート操作時間より長い
- 高い精度で量子ゲート操作が可能
- q-bitの指数的増大に対し、物理的スペースや操作コストが指数的に増大しない

Nitrogen-Vacancy center in diamond

31

NV center

Applications :

Nanoscale sensors of magnetic, electric fields, and temperature

Quantum bit

Nuclear memories and registries

F. J. Heremans et al., Proceedings of the IEEE, 104, 2009 (2016).

NV center

F. J. Heremans et al., Proceedings of the IEEE, 104, 2009 (2016).

NV center (Initialization & Readout)

NV center (Gate operation)

光を照射すると [0>:励起して落ちる際に<mark>発光</mark> |1>:励起してスピン1重項を経由して発光せずに<u>|0>に落ちる</u>

NV center (Entanglement & Scaling)

量子もつれ状態はどう作るの? →量子ビット同士を相互作用させてゲート操作を満たす共鳴周波数をズラす!

→ *m*_s = ±1の分裂が異なる

NV center (Entanglement & Scaling)

ここの遷移だけ選択的に使いたい

 f_{r_2} を印加すると $|\psi_1>$ が0でも1でも $|\psi_2>$ が1に遷移してしまう

NV center (Entanglement & Scaling)

38

系全体のエネルギー(相互作用なし)系全体のエネルギー(相互作用あり)

ここの遷移だけ選択的に使いたい

|10>⇔|11>を選択的に遷移可能!→もつれ生成

NV center (Entanglement & Scaling)

もつれ生成のためにはNVセンター同士の双極子相互作用が必要 → どうやって隣接したNVセンターを作るか?(<20nm)

・結晶合成中に不純物導入

・窒素イオン注入(狙った場所に意図的に導入できる)

NVセンターScaleの進歩

1997年1NV: A. Gruber *et al.*, Science **276**, 2012 (1997).

2010年 2 NV : P. Neumann *et al.*, Nat. Phys. **6**, 249 (2010).

2019年 3 NV : M. Haruyama *et al.*, Nat. Commun. **10**, 2664 (2019)

Struggling:注入したイオンがランダムに分布 隣接するNVの生成が困難

イオン注入技術の進歩

ナノホール注入法:

Jakobi *et al.*, Journal of Physics: Conference Series **752**, 012001 (2016). https://arxiv.org/abs/1610.00924

In this paper...

>The search was conducted over 6,000 implantation sites, amassing a total measurement time of about three weeks. Throughout both samples a total of six strongly coupled and four weakly coupled pairs were identified.

イオン注入で多数NVペアの生成は絶望的

窒素クラスターイオン注入法:

M. Haruyama et al., Nat. Commun. 10, 2664 (2019)

NV center (Coherence)

42

半導体・・・既存の集積回路技術との相性〇

SET(Single Electron Transistor): 単一電子トランジスタ

量子ドット同士の交換相互作用でもつれ生成

Detuning energy, ϵ

https://arxiv.org/abs/1411.5760

M. Veldhorst et al., Nature 526, 410 (2015).

遠距離もつれの生成

スピン1重項の片割れの情報を送って, 3重項で遠距離もつれを実現

T. Nakajima *et al.*, Nat. Commun. **9**, 2133 (2018).

Superconducting quantum bit

Superconducting quantum bit

パルス電圧:エネルギー準位に沿わずに移行 → ギャップを無視して<u>|0>と|2>が縮退</u>

<u>素子構造</u> a

SET構造: クーパー対の数でProbe電流が変化 →読み出し

<u>もつれ生成:キャパシタを介した結合</u>

キャパシタ

Box1のクーパー対の有無で Box2にクーパー対の出入り できるかどうか決まる →もつれ生成

T. Yamamoto *et al.*, Nature **425**, 941 (2003) https://arxiv.org/abs/cond-mat/9904003

Summary

理想的な量子ビット:室温動作, 電気的な操作・検出可能, 長コヒーレンス時間, 高集積化

◎室温動作 (ISCによる初期化)
 ◎スケーリング
 ③光による読み出し
 ③もつれ生成難

核スピンとの相互作用 クラスターイオン注入

主に研究・支援している企業 Quantum Diamond Technologies

②半導体技術との高い親和性
 ◎スケーリング
 ⑧低温動作
 ③もつれ生成難

1½スピンとSTスピン量子ビットの ハイブリッド量子ビット A. Noiri *et al.,* Nat. Commun. **9**, 5066 (2018)

Intel

招伝導量子ビット

◎技術的に成熟
◎もつれ生成
⑧低温動作
⑧微細化限界(特に磁束型 φ = BS)

共振器との結合 etc...

Google IBM Quantum Circuits

Error correction

<u>エラー訂正:表面符号 (Surface Code)</u>~量子ビットの冗長化~

日刊工業新聞 2018/3/8

		🧨 日刊工業新聞	8		¥ フォローする	≜ いい
テック最前線	ベンチャー道	働き方が変わる				ス
HOME 〉 海外テ	クノロジー最前線	グーグル、72量子	ビットの量子プロセ	ッサー開発		

2018年03月08日

エラー率低減で、「スパコン超え」実現目指す

≠ 72論理量子ビット = 72物理量子ビット

アルゴリズムの時間が長いとエラーが起きる!

data qubitとX(orZ)qubitでもつれを生成 X(orZ)qubitの状態からdata qubitを読み出し ⇒エラーがあれば訂正 (data qubitは非破壊)

<u>Fault-tolerant quantum computation:</u> X(orZ)qubitの実行エラー < 1%のとき 1論理量子ビットエラー **∝** 1/物理量子ビット数

> 9(物理)量子ビットで十分なエラー耐性が報告 (UCSB&Google) J. Kelly *et al.*, Nature **519**, 66 (2015). https://arxiv.org/abs/1411.7403 ⇒このまま系をスケールアップすれば エラー耐性量子コンピュータの実現!

既存の量子アルゴリズムを, 隣り合う量子ビット のもつれのみを利用するアルゴリズムに書き直す 研究も進んでいる

Contents

- Introduction
 - History of quantum computer
 - Quantum supremacy
- Quantum computing
 - Principles
 - Grover's algorithm
- Principles of quantum bits
 - Nitrogen-Vacancy center in diamond
 - Silicon quantum dots
 - Superconducting quantum bits

History of quantum computer

超伝導量子ビットでどこまで集積できるか この傾きでスケーリングしていくか

色々な問題が解決したとして、現状の量子ビットでコンピュータを実装すると何が起きるか?

4 qubits の場合

nature	ATIONS						
ARTICLE Received 16 Jan 201 Demons using a qubits A.D. Córcoles ^{1,+} , & Jerry M. Ches ^{1,+} ,	5 Accepted 18 Mar 2015 Stration of Square lat Easwar Magesan ^{1,*} , S ¹	Published 29 Apr 2015 a quantur ttice of fou rikanth J. Srinivasan ^{1,*} ,	DOI: 10.3038/Vooreet m error de ar superco Andrew W. Cross ¹ , MYG	etection (onducting M. Steffen ¹ , Jay M.	Gambetta ¹		
E8257D		HS9004A	N5128A	mixer -&-	source DC	∎ : 30 dB	() : Circulator
TEK5014 Ch1 Ch2 Ch3 Ch4	TEK5014 Ch1 Ch2 Ch3 Ch4	TEK5014 Ch1 Ch2 Ch3 Ch4	TEK5014 Ch1 Ch2 Ch3 Ch4	BBNAPS Ch1 Ch2 Ch3 Ch4	BBNAPS Ch1 Ch2 Ch3 Ch4	┃ : 20 dB	👝 : High-pass filter
	Q1 single	CR2_3	Q: sing	3 Jle	CR4_1	0 : 10 dB	🗔 : Low-pass filter
CRI		Q2 single	CR3_4	Ch4 Q4 single	Ch3 Ch4	0 ∶ 6 dB ■ : Eccosorb filter	
ст - К 70 К 4 К 800 mK 15 mK						Cht Cht ALAZARTECH ATS9870 Optimal qua	Cht Ch2 ALAZARTECH ATS9870

<u>TEK5014</u>

100万qubitsでは?

Heading towards implementation

シリコン量子ビット:1mm²内に10⁹量子ビット!(理論上) 量子コンピュータ内でアルゴリズムを全て処理するわけではない 例:ショアのアルゴリズム 素因数分解問題 → 周期探索問題 → 周期探索問題の解 →素因数分解の解 量子アルゴリズム 古典コンピュータ

→ シリコン量子ビットは古典コンピュータと相性◎

シリコン量子ビットチップ (1500 qubits)

50 nm角のqubitを1500個集積・・・髪の毛くらいの太さ 従来のシリコン技術で作製 → 100万~qubitsへ期待

Intelプレスリリース https://newsroom.intel.com/news/intel-starts-testing-smallestspin-gubit-chip-guantum-computing/#gs.e8jofd

*1超伝導量子ビット:0.1mm角

チップは小さくできそう
制御用高周波配線は?

ゲート方式量子コンピュータ:<u>100万bit</u>以上で誤り訂正付き高性能万能コンピュータ

from google AI Blog

29.1 A 28nm Bulk-CMOS 4-to-8GHz ;2mW Cryogenic Pulse Modulator for Scalable Quantum Computing

Google 72bit : Bristlecone

https://arxiv.org/abs/1902.10864

3K, <2mW, 1×1.6 mm 単一量子ビット制御実証

Problem:量子ビットあたり2本以上の高周波伝送配線:放熱による環境温度上昇,物理スペース Solution:オンチップ発振器による量子ビットの操作・読み出し

Problem:初期化・量子コヒーレンス及び超伝導状態の維持:~10mKの極低温への冷却 Solution:高温動作可能な量子ビット,人為的な初期化手法の確立

量子ビットに適した材料

Spin-Spin relaxation time T_2 : Coherence time of quantum state Measurement methods : Hanh-echo, FID

Diamond NV center : ~0.63 ms (¹³C 1.1%, I_{C} =1/2) donor spins in Si : 0.5~0.8 ms (²⁹Si 4.7%, I_{Si} =1/2) Mn:ZnO : 0.8 ms (⁶⁷Zn 4.1%, I_{Zn} = 5/2) SiC : 1.3 ms (²⁹Si, ¹³C)

 \rightarrow SiC was able to host qubits with a much longer T_2 time than those of NV center, in spite of having a higher nuclear spin density than natural diamond.

スピン自由度を量子ビットとして扱う → 磁場と相互作用してデコヒーレンス

局所磁場を作り出すもの:核スピン

量子ビットに適した材料

<u>SiC中の電子スピンのコヒーレンス時間を計算</u>

ARTICLE Received 27 May 2016 | Accepted 17 Aug 2016 | Published 29 Sep 2016

29 Sep 2016 DOI: 10.1038/ncomms12935

Quantum decoherence dynamics of divacancy spins in silicon carbide

Hosung Seo¹, Abram L. Falk^{1,2}, Paul V. Klimov¹, Kevin C. Miao¹, Giulia Galli^{1,3} & David D. Awschalom¹

Interactions with spin-cluster determine the coherence time

heterogeneous interactions between ¹³C and ²⁹Si \rightarrow No effect on T₂ coherence time (not T₂*)

homogeneous interactions between nuclear spins of the same kind

→Essential interactions for coherence time

同種核スピン同士の相互作用が本質的なデコヒーレンスの原因

H. Seo et al., Nat Commun 7, 12935 (2016).

量子ビットに適した材料

核スピンペアの密度はSiCの方が高いが,核スピン同士の距離はNVの方が近い(相互作用が大きい) 核スピンペアのフリップフロップは、異なる核種があると歳差周波数が異なり伝搬が遮断 → SiCのほうが長コヒーレンス

核スピンが少ない**化合物材料系 +** 電気的:低キャリア密度 磁気的:**低(核)スピン密度** 熱的:高デバイ温度 量子ビット材料として有望

H. Seo et al., Nat Commun 7, 12935 (2016).

量子ビットに適した材料

ARTICLE OPEN Spin coherence in two-dimensional materials

Meng Ye¹, Hosung Seo^{1,2,3,4} and Giulia Galli^{1,2,5,6}

Spin defects in semiconducting solids are promising platforms for the realization of quantum bits. At low temperature and in the presence of a large magnetic field, the central spin decoherence is mainly due to the fluctuating magnetic field induced by nuclear spin flip-flop transitions. Using spin Hamiltonians and a cluster expansion method, we investigate the electron spin coherence of defects in two-dimensional (2D) materials, including delta-doped diamond layers, thin Si films, MoS₂, and h-BN. We show that isotopic purification is much more effective in 2D than in three-dimensional materials, leading to an exceptionally long spin coherence time of more than 30 ms in an isotopically pure monolayer of MoS₂.

npj Computational Materials (2019)5:44 ; https://doi.org/10.1038/s41524-019-0182-3

二次元系材料等も量子ビット材料候補として研究が行われている!

M. Ye et al., npj Comput Mater 5, 44 (2019).